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What is volume electron microscopy (VEM), what’s the data like

Segmentation challenges in vVEM

CEMS500K as a resource for the community
Outlook

Take-aways

* An understanding of volume EM image data

» Our approach of tackling the segmentation bottleneck
 An exciting area for DL work!



What is volume electron microscopy ? (Hint: It’s NOT cryoEM)
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size of feature imaged in 3-D

“‘cryoEM” = Structural studies
of soluble and membrane
protein complexes at near-
atomic resolution.

“volume EM” = A group of imaging approaches
to study cells and tissue ultrastructure in 3D at

nanoscale resolutions.
Baena V et al, Viruses 2021




Why volume electron microscopy ?

The geometry of a 3D object can be hidden by the limitations
of 2D imaging.

Baena V et al, Viruses 2021

Typica| VEM 13 pi pelineu Peddie C and Collinson, L Micron 2014

Narayan K and Subramaniam S, Nat Methods 2015

Biological experiment - Sample preparation - VEM imaging = Image processing - segmentation - analysis

VEM has turbocharged connectomics research
(many refs, read Kubota Y et al, Front Neural Circuits 2018)



The VEM segmentation challenge

The conversion of large, information-rich, high- There have been significant advances made in
resolution low SNR, grayscale, “non-specific” this area in the recent past

2D micrographs (stack) into accurate and
precise binary label maps and 3D meshes for
downstream analysis

VEM dataset sizes are mostly 1-100GB, now easily Xu CS et al, Nature 2021
entering TB range (1 dataset published at 0.5 PB)



So... what’s the problem?

* Manual segmentation will never catch up with speed of acquisition
« Current segmentation efforts by DL approaches are improving throughput

« BUT transfer learning is a big problem

Typical vEM “automatic segmentation” pipeline:

* Acquire vEM data = Manually segment sub-volume - Train fancy model = Infer on full vEM dataset

!

Infer on slightly different dataset = poor results
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Inadequate training and context can have bad consequences! methods narrow the range of contexts available to a model.

The limited data distribution during supervised training

https://en.wikipedia.org/wiki/Ecce_Homo_(Mart%C3%ADnez_and_Gim%C3%A9nez)




CEMS500K: a resource for DL-based segmentation of vEM data

* Insight:

* Provide the model data in more contexts, and remove constraints of supervision

* ldea:
* Pre-train a model on a general task (generic feature recognition in EM images)
« Then use the parameters for specific downstream tasks (organelle segmentation)
* Approach:
« Curate a relevant, heterogenous, information-rich, non-redundant EM dataset
« Cellular Electron Microscopy 0.5 x 108 images = CEM500K
» Unsupervised model pre-trained on CEM500K = no need for up-front segmentation

* Momentum Contrast algorithm (MoCoV2) for pre-training e K et al, 2019._https://arxiv.org/abs/1911.05722

« Train and test against publicly available vVEM benchmarks

NOTE: the CEM500k dataset and pre-training approach is agnostic to the architecture of the models.



https://arxiv.org/abs/1911.05722

CEMS500K: a resource for DL-based segmentation of vEM data

https://elifesciences.org/articles/65894

https://qithub.com/volume-em/cellemnet
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9,626 2D datasets (png, jpg, tiff) 591 3D datasets (avi, mp4, nrrd, mrc, tif, nii.gz, hdf)
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CEMraw

5.3x106 images
8-bit unsigned tiff

CEMdedup near-duplicates exemplar
1.1x10% images :
8-bit unsigned tiff Image filtering

Uninformative

CEM500K

0.5x106 images
8-bit unsigned tiff



https://elifesciences.org/articles/65894
https://github.com/volume-em/cellemnet

Pre-training by CEM500K improves transfer learning
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Trimming the CEM dataset For diverse data, pre-training on CEM

Overall strategy — nothing too fancy improves performance is better than on a mouse brain dataset

Cool result (Fig. 3): without a priori knowledge, the model recognizes organelles as relevant features in these images!
The model also performs better with image variations (contrast, noise etc) expected from variable data acquisition




CEM500K beats current vEM benchmarks — and uncover human errors

a Benchmark
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2014) -




These are good results, but universal vEM segmentation models is the ultimate aim

Need better/challenging benchmarks and community agreement on robustness metrics
Better “DL + clean-up” pipelines, better communication with biologists

Transition from “pretty pictures” to quantitative data

Newcomers: Be wary of going down the rabbit hole with models and parameters

- Data (not model architecture) is key!
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